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Abstract  1 

Rapid population and economic growth in South-East-Asia has been accompanied by extensive land 2 

use change with consequent impacts on catchment hydrology.  Modelling methodologies capable of 3 

handling changing land use conditions are therefore becoming ever more important, and are 4 

receiving increasing attention from hydrologists.  A recently developed Data Assimilation based 5 

framework that allows model parameters to vary through time in response to signals of change in 6 

observations is considered for a medium sized catchment (2880 km2) in Northern Vietnam 7 

experiencing substantial but gradual land cover change.  We investigate the efficacy of the method 8 

as well as the importance of the chosen model structure in ensuring the success of time varying 9 

parameter methods.  The framework was utilized with two conceptual models (HBV and HyMOD) 10 

that gave good quality streamflow predictions during pre-change conditions. Although both time 11 

varying parameter models gave improved streamflow predictions under changed conditions 12 

compared to the time invariant parameter model, persistent biases for low flows were apparent in 13 

the HyMOD case.  It was found that HyMOD was not suited to representing the modified baseflow 14 

conditions, resulting in extreme and unrealistic time varying parameter estimates.   This work shows 15 

that the chosen model can be critical for ensuring the time varying parameter framework 16 

successfully models streamflow under changed land cover conditions.  It also serves as an effective 17 

tool for separating the influence of climatic and land use change in retrospective studies where the 18 

lack of a paired control catchment precludes such an assessment.    19 
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1. Introduction    20 

Population and economic growth in South-East Asia has led to significant land use change, with rapid 21 

deforestation occurring largely for agricultural purposes [Kummer and Turner, 1994]. Forest cover in 22 

the Greater Mekong Sub-region (comprising Myanmar, Thailand, Cambodia, Laos, Vietnam, and 23 

South China) has decreased from about 73% in 1973 to about 51% in 2009 [WWF, 2013].  Vietnam in 24 

particular has had the second highest rate of deforestation of primary forest in the world, based on 25 

estimates from the Forest Resource Assessment by the United Nations Food and Agriculture 26 

Organization [FAO, 2005].  Such extensive land use change has the potential to significantly alter 27 

catchment hydrology (in terms of both quantity and quality), with its effects sometimes not 28 

immediate but occurring gradually over a lengthy period of time.  Recent estimates from satellite 29 

measurements indicate that rapid deforestation continues in the region, although at lower rates [e.g. 30 

Kim et al., 2015]. Persistent land use change necessitates modelling methodologies that are capable 31 

of providing accurate hydrologic predictions, despite non-stationarity in catchment processes. 32 

 33 

The literature on land-use change and its impacts on catchment hydrology is extensive, with studies 34 

examining the effects of 1) conversion to agricultural land-use [Thanapakpawin et al, 2007; 35 

Warburton et al., 2012]; 2) deforestation [Costa et al., 2003; Coe et al, 2011]; 3) afforestation [e.g. 36 

Yang et al., 2012; Brown et al, 2013] and urbanization [Bhaduri et al., 2001; Rose & Peters, 2001].  37 

Fewer studies have examined how traditional modelling approaches must be modified to handle 38 

non-stationary conditions, or how modelling methods can be used to assess impacts of land use 39 

change.  Split sample calibration has been used frequently to retrospectively examine changes to 40 

model parameters due to land use or climatic change [Seibert & McDonnell, 2010; Coron et al., 2012; 41 

McIntyre & Marshall, 2010; Legesse et al, 2003].  Several other studies have employed scenario 42 

modelling, whereby hydrologic models are parameterized to represent different possible future land 43 

use conditions [e.g. Niu & Sivakumar, 2013; Elfert & Borman, 2010].  A related approach involves 44 
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combining land use change forecast models with hydrologic models [e.g. Wijesekara et al., 2012].  45 

However the aforementioned approaches are unsuited to short-term predictive modelling or 46 

hydrologic forecasting in dynamic catchments, as the predicted land use change may not reflect 47 

actual changes.  A potentially more suitable approach in such a setting is to allow model parameters 48 

to vary in time, rather than assuming a constant optimal value or stationary probability distribution. 49 

Many existing methods utilising such a framework require some apriori knowledge of the land use 50 

change in order to inform variations in model parameters (see for instance Efstratiadis, 2015; Brown 51 

et al., 2006; and Westra et al., 2014).  Recent efforts have examined the potential for time varying 52 

models to automatically adapt to changing conditions using information contained in hydrologic 53 

observations and sequential Data Assimilation, without requiring explicit knowledge of the changes 54 

[see for example Taver et al., 2015, Pathiraja et al., 2016a&b].  Such approaches can objectively 55 

modify model parameters in response to signals of change in observations in real time, whilst 56 

simultaneously providing uncertainty estimates of parameters and streamflow predictions.  They can 57 

also be used to determine whether observed changes to streamflow dynamics are driven by climatic 58 

or land cover changes.  59 

 60 

Pathiraja et al. [2016a] presented an Ensemble Kalman Filter based algorithm (the so-called Locally 61 

Linear Dual EnKF) to estimate time variations in model parameters.  The method sequentially 62 

assimilates observations into a numerical model to generate improved estimates of model states, 63 

fluxes and parameters at a given time based on their respective uncertainties.  The method was 64 

applied to 2 sets of small (< 350 ha) paired experimental catchments with rapid and extensive 65 

deforestation (50% and 100% of catchment cleared over 3 months), leading to strong signals of 66 

change in the hydrologic observations [see Pathiraja et al., 2016b].  Here we extend this work to a 67 

larger catchment experiencing more realistic land cover change (more gradual and patchy), whilst 68 

also investigating the importance of the chosen model structure.  Previous studies have 69 

demonstrated that impacts of land use change on the hydrologic response are dependent on many 70 
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factors including the type and rate of land cover conversion as well the spatial pattern of different 71 

land uses within the catchment [Dwarakish & Ganasri, 2015; Warburton et al., 2012].  In such 72 

situations, the effects of unresolved spatial heterogeneities in model inputs (e.g. rainfall) and the 73 

relatively less pronounced changes in land surface conditions make time varying parameter detection 74 

more difficult.  We also examine the role of the hydrologic model in determining the ability of the 75 

time varying parameter framework to provide high quality predictions in changing conditions.  These 76 

issues are investigated for the Nammuc catchment (2880 km2) in Northern Vietnam which has 77 

experienced deforestation largely due to increasing agricultural development.  Land cover change 78 

has occurred at varying rates, with cropland accounting for roughly 23% between 1981 and 1994, 79 

and 52% by 2000.  We use two conceptual hydrologic models (given the availability of point rainfall, 80 

temperature, and streamflow data) to determine the ability of the Locally Linear Dual EnKF to 81 

produce accurate predictions under changing land surface conditions.  82 

 83 

The remainder of this paper is structured as follows. Details of the study catchment and the impact 84 

of land cover change are analysed in Section 2.  Section 3 summarizes the experimental setup 85 

including the hydrological models and the time varying parameter estimation method used.  Results 86 

are provided in Section 4, along with an analysis of whether the time varying model structures reflect 87 

the observed catchment dynamics.  Finally, we conclude with a summary of the main outcomes of 88 

the study as well as proposed future work. 89 

2. The Nammuc Catchment  90 

The Nammuc catchment (2880 km2) is located in the Red River Basin, the second largest drainage 91 

basin in Vietnam which also drains parts of China and Laos.  The local climate is tropical monsoon 92 

dominated with distinct wet (May to October) and dry (November to April) seasons.  The wet season 93 

tends to have high temperatures (on average 27 to 29 °C) due to south-south easterly winds that 94 

bring humid air masses.  Conversely, during the dry season, circulation patterns reverse carrying 95 
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cooler dry air masses to the basin (leading to average temperatures of 16 to 21°C).  Streamflow 96 

response is consequently monsoon driven, with high flows occurring between June and October 97 

(generally peaking in July/August) and low flows in the December to May period (Vu, 1993).  Average 98 

annual rainfall at Nammuc varies between 1300 and 2000 mm (on average 1600 mm).  A summary of 99 

catchment properties is provided in Table 1.   100 

 101 

Figure 1 shows the available land cover information for the Nammuc catchment.  The first land cover 102 

map refers to the period 1981-1994 and was obtained by the Vietnamese Forest Inventory and 103 

Planning Institute (http://fipi.vn/Home-en.htm). The second land cover map refers to year 2000 and 104 

was obtained from the FAO Global Land Cover database 105 

(http://www.fao.org/geonetwork/srv/en/metadata.show?id=12749&currTab=simple). A comparison 106 

of the two maps shows a reduction in forest cover in favor of cropland; Evergreen Leaf decreases 107 

from about 60% to 30% whilst cropland increases from about 23% to 52%. The change in land cover 108 

is patchy, although mostly concentrated in the northern part of the catchment. Because of the scant 109 

information available, it is not easy to identify the precise time period of these changes. Based on the 110 

available land cover map information and the changes to observed runoff (see Section 2.1), we posit 111 

that a period of rapid extensive deforestation occurred in early-1990s.  112 

 113 

Daily point rainfall data is available at four precipitation stations surrounding the catchment (Dien 114 

Bien, Tuan Giao, Quynh Nhai and Nammuc, see Figure 1).  Catchment averaged rainfall was 115 

developed as a weighted sum of the four stations with weights determined by Thiessen Polygons.  116 

Daily mean temperature was calculated in a similar fashion using temperature records from the 2 117 

closest gauges (Lai Chau and Quynh Nhai, see Figure 1).  This was used to estimate Potential 118 

Evapotranspiration through the empirical temperature-latitude based Hamon PET method [Hamon, 119 

1961].  Daily rainfall, temperature and streamflow data was provided by the Vietnamese Institute of 120 

Water Resources Planning. 121 
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2.1. Impact of Land Cover Change on Streamflow  122 

An examination of the observed streamflow and rainfall records shows that distinct changes to the 123 

hydrologic regime are evident after the mid-1990s.  The annual runoff coefficient varies between 0.4 124 

and 0.6 prior to 1994, after which it increases to between 0.6 and 0.8 until 2004 (see Figure 2a).  125 

However, increases to annual yields are driven mostly  by changes to baseflow volume.  This is 126 

evident in Figure 2a, which shows that the increase in the annual direct runoff coefficient 127 

(
𝑟𝑢𝑛𝑜𝑓𝑓−𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤

𝑟𝑎𝑖𝑛𝑓𝑎𝑙𝑙
 ) is less than the increase in the total runoff coefficient (roughly 0.1 increase 128 

compared to 0.2 respectively).  Baseflow was estimated using the two parameter recursive baseflow 129 

filter of Eckhardt [2005], with on-line updating of baseflow estimates to match low flows.  A small 130 

increase in the Annual Baseflow Index (
𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤

𝑟𝑢𝑛𝑜𝑓𝑓
) is apparent also, from about 0.32 on average in the 131 

period 1970 to 1982 to 0.39 on average after 1994 (Figure 2b).  This indicates that the annual 132 

increases to baseflow volume exceed the increases to direct runoff volume. Similar changes were 133 

found by Wang et al. [2012] who analyzed records in the entire Da River basin which drains the 134 

largest river in the Red River catchment.  135 

 136 

At a seasonal time scale, it is apparent that both wet and dry season flows exhibit temporal 137 

variations.  We utilized the Moving Average Shifting Horizon (MASH) [Anghileri et al., 2014] and 138 

Mann-Kendall test to assess seasonal trends in observed streamflow, precipitation, and temperature 139 

data.  A steady increase in baseflow is again apparent (see February to April in Figure 2c), as well as 140 

increases to wet season flows (see June to September in Figure 2c).  Mann-Kendall test (with 141 

significance level equal to 5%) on annual and monthly streamflow time series shows increasing 142 

trends in almost all months, i.e., from October to July. No concurrent increases are apparent in 143 

rainfall (see Figure 2d). Also the Mann-Kendall test applied to precipitation time series does not show 144 

any statistically significant trend, except a decrease in September for Nammuc and Quynh Nhai 145 

station and an increase in July for Dien Bien station. Temperature variations are not evident from the 146 

MASH analysis (not shown) and no significant trend can be detected by applying the Mann-Kendall 147 
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test. These results indicate that changes in streamflow dynamics are likely due to land use change 148 

rather than climatic impacts.  149 

3. Experimental Setup  150 

3.1. Hydrologic Models 151 

Conceptual lumped models were adopted due to the availability of point rather than distributed 152 

hydro-meteorological data of sufficient length.  We considered the HyMOD [Boyle, 2001] and 153 

Hydrologiska Byrans Vattenbalansavdelning (HBV) [Bergstrom et al., 1995] models.  They differ 154 

mainly in the way components of the response flow are separated (HBV has near surface flow, 155 

interflow, and baseflow components whilst HyMOD has a quickflow and slow flow component only) 156 

and how these flows are routed. A schematic of the models is shown in Figure 3.  157 

 158 

In the HyMOD model, spatial variations in catchment soil storage capacity are represented by a 159 

Pareto distribution with shape parameter 𝑏 and maximum point soil storage depth 𝑐𝑚𝑎𝑥.  Excess 160 

rainfall (𝑉) is partitioned into three cascading tanks representing quick flow and a single slow flow 161 

store through the splitting parameter 𝛼.  Outflow from these linear routing tanks is controlled by 162 

parameters 𝑘𝑞 (for the quick flow stores) and 𝑘𝑠 (for the slow flow store).  The model has a total of 5 163 

states and 5 parameters.   164 

 165 

In the HBV model, input to the soil store is represented by a power-law function (see Figure 3, note 166 

the snow store is neglected for this study).  Excess rainfall enters a shallow layer store which 167 

generates: 1) near surface flow (𝑞0) whenever the shallow store state (𝑠𝑡𝑤1) is above a threshold 168 

(ℎ𝑙1) and 2) interflow (𝑞1) by a linear routing mechanism controlled by the 𝐾1 parameter. 169 

Percolation from the shallow layer store to the deep layer store (controlled by 𝑝𝑒𝑟𝑐 parameter) then 170 

leads to the generation of baseflow also via linear routing (controlled by the 𝐾2 parameter). Finally, a 171 
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triangular weighting function of base length 𝑀𝑎𝑥𝑏𝑎𝑠 is used to route the sum of all three flow 172 

components.  There are a total of 9 parameters and 3 states.  173 

 174 

The Shuffled Complex Evolution Algorithm (SCE-UA) [Duan et al., 1993] and the Borg Evolutionary 175 

Algorithm [Hadka & Reed, 2013] were used to calibrate the models to pre-change conditions (1973 176 

to 1979).  The period 1973 to 1979 was selected for calibration as it was expected to have minimal 177 

land cover changes, and also to ensure sufficient data availability for the assimilation period.  Both 178 

models had very similar performance in terms of reproducing observed runoff (an NSE of 0.75 and 179 

0.77 for HyMOD and HBV respectively).  HBV was slightly better at reproducing low flows whilst 180 

HyMOD was slightly better at mid-range flows (see Table 2).   181 

3.2.  Time Varying Parameter Estimation  182 

A framework for time varying parameter estimation based on Joint State and Parameter updating 183 

using the Ensemble Kalman Filter [Evensen, 1994] was presented in Pathiraja et al. [2016a].  The 184 

method works by sequentially proposing parameters, updating these using the Ensemble Kalman 185 

filter and available observations, and then using these updated parameters to propose and update 186 

model states.  An approach for proposing parameters in the time varying setting was also presented, 187 

a task which is made difficult by the lack of a model that prescribes time variations in model 188 

parameters.  The so-called Locally Linear Dual EnKF was verified against multiple synthetic case 189 

studies, as well as in 2 small experimental catchments experiencing controlled land use change 190 

[Pathiraja et al., 2016b].  The algorithm is summarised below, for full details refer to Pathiraja et al. 191 

[2016a and 2016b].    192 

 193 

Suppose a dynamical system can be described by a vector of states 𝒙𝑡 and outputs 𝒚𝑡 and a vector of 194 

associated model parameters 𝜽𝑡 at any given time t.  The uncertain system states and parameters 195 

are represented by an ensemble of states {𝒙𝑡
𝑖 } 𝑖=1:𝑛 and parameters {𝜽𝑡

𝑖 }
𝑖=1:𝑛

 each with n members.  196 
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Suppose also that the system outputs are observed (𝒚𝑡
𝑜) but that there is also some uncertainty 197 

associated with these observations.  A single cycle of the Locally Linear Dual EnKF procedure for a 198 

given time t is undertaken as follows: 199 

1. Propose a set of parameters.  This involves generating a parameter ensemble using prior 200 

knowledge.  In this case, our prior knowledge comes from the updated parameter ensemble 201 

from the previous time (𝜽𝑡−1
𝑖+ ) and how it has changed over recent time steps.  The prior (or 202 

background) ensemble (𝜽𝑡
𝑖−) is generated by perturbing 𝜽𝑡−1

𝑖+ with random noise such that its 203 

mean is a linear extrapolation of updated ensemble means from the previous two time steps.  204 

Perturbations are sampled from a Gaussian density with mean zero and variance 𝑠2𝚺𝑡−1
𝜃 , 205 

where 𝚺𝑡−1
𝜃  is the covariance matrix of the updated parameter ensemble from the previous 206 

time and 𝑠2 is a tuning parameter.  The ensemble mean is then shifted to ensure it matches 207 

the linear extrapolation.  Note that the extrapolation is forced to be less than a pre-defined 208 

maximum rate of change to minimise overfitting and avoid parameter drift due to isolated 209 

large updates. 210 

2. Consider observation and forcing uncertainty.  This is done by perturbing measurements of 211 

forcings and system outputs with random noise sampled from a distribution representing the 212 

errors in those measurements.  The result is an ensemble of forcings (𝒖𝑡
𝑖 ) and observations 213 

(𝒚𝑡
𝑖 ) each with n members.    214 

3. Generate simulations using prior parameters.  The prior parameters from Step 1 and 215 

updated states from the previous time are forced through the model equations to generate 216 

an ensemble of model simulations of states (𝒙̂𝑡
𝑖 )  and outputs (𝒚̂𝑡

𝑖 ). 217 

4. Perform the Kalman update of parameters. Parameters are updated using the Kalman 218 

update equation and the prior parameter and simulated output ensemble from Step 1 and 3  219 

𝜽𝑡
𝑖+ = 𝜽𝑡

𝑖−  + 𝐊𝑡
𝜃(𝒚𝑡

𝑖 − 𝒚̂𝑡
𝑖 )  𝑓𝑜𝑟 𝑖 = 1: 𝑛     (1)   220 

𝐊𝑡
𝜃 =  𝚺𝑡

𝜃𝑦̂
[𝚺𝑡

𝑦̂𝑦̂
+  𝚺𝑡

𝑦𝑜𝑦𝑜

]
−1

     (2)     221 
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where 𝚺𝑡
𝜃𝑦̂

is a matrix of the cross covariance between errors in parameters 𝜽𝑡
𝑖− and 222 

simulated observations 𝒚̂𝑡
𝑖  ; 𝚺𝑡

𝑦𝑜𝑦𝑜

 is the error covariance matrix of the observations; and 223 

𝚺𝑡
𝑦̂𝑦̂

is the error covariance matrix of the simulated observations.  224 

5. Generate simulations using updated parameters. Step 3 is repeated with the updated 225 

parameter ensemble 𝜽𝑡
𝑖+ to generate an ensemble of model simulations of states (𝒙𝑡

𝑖−) and 226 

outputs (𝒚̃𝑡
𝑖 ). 227 

6. Perform the Kalman update of states and outputs. Use the Kalman update equation for 228 

correlated measurement and process noise, and the simulated state (𝒙𝑡
𝑖−) and output (𝒚̃𝑡

𝑖 ) 229 

ensembles from Step 5 to update them: 230 

𝒙𝑡
𝑖+ = 𝒙𝑡

𝑖−  + 𝐊𝑡
𝑥(𝒚𝑡

𝑖 −  𝒚̃𝑡
𝑖 )  𝑓𝑜𝑟 𝑖 = 1: 𝑛     (3)      231 

𝐊𝑡
𝑥 =  [𝚺𝑡

𝑥𝑦̃
+ 𝚺𝑡

𝜀𝑥𝑦𝑜

] [𝚺𝑡
𝑦̃𝑦̃

+ 𝚺𝑡

𝜀𝑦̃𝑦𝑜

+ (𝚺𝑡

𝜀𝑦̃𝑦𝑜

)
𝐓

+  𝚺𝑡
𝑦𝑜𝑦𝑜

]

−1

    (4)         232 

𝜺𝑥𝑡
𝑖 =  𝒙𝑡

𝑖− −  𝒙̂𝑡
𝑖   ;  𝜺𝑦̃𝑡

𝑖 =  𝒚̃𝑡
𝑖 − 𝒚̂𝑡

𝑖         (5)  233 

where 𝚺𝑡
𝑥𝑦̃

 is a matrix of the cross covariance between simulated states {𝒙𝑡
𝑖−}

𝑖=1:𝑛
 and outputs 234 

{𝒚̃𝑡
𝑖 }

𝑖=1:𝑛
 from Step 5; 𝚺𝑡

𝜀𝑥𝑦𝑜

represents the covariance between {𝜺𝑥𝑡
𝑖 }

𝑖=1:𝑛
  and the observations; 235 

𝚺𝑡

𝜀𝑦̃𝑦𝑜

 represents the covariance between the {𝜺𝑦̃𝑡
𝑖 }

𝑖=1:𝑛
  and the observations; and ( )𝐓 represents 236 

the transpose operator.  237 

3.2.1. Application to the Nammuc Catchment 238 

Joint state and parameter estimation was undertaken for the Nammuc Catchment over the period 239 

1975 to 2004 by assimilating streamflow observations into the HyMOD and HBV models at a daily 240 

time step.  Given the fairly low parameter dimensionality of HyMOD, all model parameters were 241 

allowed to vary in time whilst for HBV the 𝑙𝑝 and 𝑀𝑎𝑥𝑏𝑎𝑠  parameters (see Figure 3) were held fixed 242 

(𝑙𝑝  = 1 and 𝑀𝑎𝑥𝑏𝑎𝑠  = 1 day).  This was based on the results of Variance Based Sensitivity Analysis or 243 

Sobol method [see for example Saltelli et al., 2008] implemented through the SAFE toolbox [Pianosi 244 
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et al., 2015] which found these to be the least sensitive and least important in defining variations to 245 

catchment hydrology (see Table 3).  Note that although the ℎ𝑙1 parameter was found to have low 246 

sensitivity, it was retained as a time varying parameter due to its conceptual importance in 247 

separating interflow and near surface flow (refer Figure 3). 248 

 249 

Unbiased normally distributed ensembles of the parameters and states are required to initialise the 250 

LL Dual EnKF.  Initial parameter ensembles were generated by sampling from a Gaussian distribution 251 

with mean equal to the calibrated parameters over the pre-change period and variance estimated 252 

from parameter sets with similar objective function values.  Parameter sets with similar objective 253 

function values were obtained when using different starting points to the optimization algorithm 254 

during the model calibration stage.  Initial state ensembles were also sampled from normal 255 

distributions with mean equal to the simulated state at the end of the calibration period.  An 256 

ensemble size of 100 members was adopted and assumed sufficiently large based on the findings of 257 

Moradkhani et al. [2005] and Aksoy et al. [2006].  Due to the stochastic-dynamic nature of the 258 

method, ensemble statistics were calculated over 20 separate realisations of the LL Dual EnKF.  The 259 

prior parameter generating method described in Step 1 of Section 3.2 requires specification of the 260 

tuning parameter 𝑠2 to define the variance of the perturbations.  This was tuned by selecting the 𝑠2 261 

value that optimized the log score [Good, 1952] (a measure of forecast quality) of background 262 

streamflow predictions (𝒚̃𝑡
𝑖 ) obtained from the LL Dual EnKF.    The maximum allowable daily rate of 263 

change in the ensemble mean was based on assuming a linear rate of change within the entire 264 

feasible parameter space over a three year period.  265 

 266 

As detailed in Section 3.2, observation and forcing uncertainty is considered by perturbing 267 

measurements with random noise.  Here streamflow errors were assumed to be zero-mean normally 268 

distributed (truncated to ensure positivity) and heteroscedastic.  The variance is defined as a 269 
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proportion of the observed streamflow, to reflect the fact that larger flows tend to have greater 270 

errors than low flows:   271 

   𝑞𝑜𝑏𝑠
𝑖 (𝑡) =  𝑞𝑜𝑏𝑠(𝑡) +  𝜀𝑞

𝑖   𝑤ℎ𝑒𝑟𝑒 𝜀𝑞
𝑖  ~ 𝑇𝑁(0, 𝑑 x 𝑞𝑜𝑏𝑠(𝑡))       𝑖 = 1: 𝑛   (6) 272 

where TN indicates the truncated normal distribution to ensure positive flows and 𝑑 = 0.1.  A 273 

multiplier of 0.1 was chosen based on estimates adopted for similar gauges in hydrologic DA studies 274 

[e.g. Clark et al., 2008; Weerts & Serafy, 2006; Xie et al., 2014]. 275 

 276 

Several studies have noted that a major source of rainfall uncertainty arises from scaling point 277 

rainfall to the catchment scale [Villarini & Krajewski, 2008; McMillan et al., 2011] and that 278 

multiplicative errors models are suited to describing such errors [e.g. Kavetski et al., 2006]. Rainfall 279 

uncertainties were therefore described using unbiased, lognormally distributed multipliers: 280 

𝑃𝑖(𝑡) = 𝑃(𝑡). 𝑀𝑖        (7) 

𝑀𝑖~𝐿𝑁(𝑚, 𝑣) and 𝑋𝑖 =  log(𝑀𝑖) ~ 𝑁(𝜇, 𝜎2)         𝑖 = 1: 𝑛      (8) 

where 𝑚 and 𝑣 are the mean and variance of the lognormally distributed rainfall multipliers 𝑀 281 

respectively and 𝜇 and 𝜎2 are the mean and variance of the normally distributed logarithm of the 282 

rainfall multipliers 𝑀.  For unbiased perturbations, we let 𝑚 = 1.  The variance of the rainfall 283 

multipliers (𝑣) was estimated by considering upper and lower bound error estimates in the Thiessen 284 

weights assigned to the four rainfall stations (see Section 2 for calculation of catchment averaged 285 

rainfall, 𝑃(𝑡)).  The resulting upper and lower bound catchment averaged rainfall sequences were 286 

then used to estimate error parameters due to spatial variation in rainfall: 287 

𝑣 =  𝑒(2𝜇+ 𝜎2). (𝑒𝜎2
− 1)      (9)  288 

𝜎2 =  𝜎2 ̂ =  𝑣𝑎𝑟 (log [
𝑷𝑢𝑝𝑝𝑒𝑟,10

𝑷𝑙𝑜𝑤𝑒𝑟,10
])        (10)  289 

𝜇 =  log(𝑚) −  
𝜎2

2
=  − 

𝜎2

2
        (11)  290 

where 𝑷𝑢𝑝𝑝𝑒𝑟,10 indicates catchment averaged rainfall sequence using the upper bound Thiessen 291 

weights with daily depth greater than 10mm (similar for 𝑷𝑙𝑜𝑤𝑒𝑟,10) and 𝜎2 ̂  was found to be 0.05.  A 292 
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10mm rainfall depth threshold was chosen to avoid large rainfall fractions due to small rainfall 293 

depths.  Similarly, we assume the dominant source of uncertainty in temperature data arises from 294 

spatial variation.  Differences in temperature records at Lai Chau and Quynh Nhai (only available 295 

gauges with temperature records) were analysed and found to be approximately normally 296 

distributed with sample mean 0.2 deg C and variance of 1.4 deg C.  A perturbed temperature 297 

ensemble was then generated according to equation 13: 298 

   𝑇𝑖(𝑡) =  𝑇𝑎𝑣𝑔(𝑡) +  𝜀𝑇
𝑖   𝑤ℎ𝑒𝑟𝑒 𝜀𝑇

𝑖  ~ 𝑇𝑁(0, 1.4)       𝑖 = 1: 𝑛        (12)      299 

where 𝑇𝑎𝑣𝑔(𝑡) represents catchment averaged temperature (see Section 2).  Note that perturbations 300 

were taken to be unbiased (zero mean) as the sample mean of the differences in the temperature 301 

records was close to zero.  The same perturbed input and observation sequences were used for the 302 

HyMOD and HBV runs for the sake of comparison. A summary of the values adopted for the various 303 

components of the Locally Linear Dual EnKF for each model is provided in Table 4 and 5.     304 

4. Results and Discussion  305 

Variations in the estimated parameter distributions from the LL Dual EnKF are evident for both 306 

models.  In the case of the HBV model, changes at an inter-annual time scale are evident for the 307 

𝑝𝑒𝑟𝑐 and 𝛽 (see Figure 4).  The decrease in the 𝛽 parameter means that a greater proportion of 308 

rainfall is converted to runoff (i.e. more water entering the shallow layer storage).  Additionally, the 309 

increase in the 𝑝𝑒𝑟𝑐 parameter means that a greater volume of water is made available for baseflow 310 

generation.  These changes correspond with the observed increase in the annual runoff coefficient 311 

(Figure 2) and increase in baseflow volume (as discussed in Section 2.1).  Similar parameter 312 

adjustments are seen for HyMOD, at least at a qualitative level (see Figure 5). The sharp increase in 313 

the 𝑏 parameter during the post-change period means that a greater volume of water is available for 314 

routing (as larger 𝑏 values mean that a smaller proportion of the catchment has deep soil storage 315 

capacity) and the downward inter-annual trend in 𝛼 means that a greater portion of excess runoff is 316 
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routed through the baseflow store.  Intra-annual variations in updated model parameters for both 317 

HyMOD and HBV are also apparent (refer Figures 4 and 5).  This is due to the inability of a single 318 

parameter distribution to accurately model both wet and dry season flows, an issue that is commonly 319 

encountered when modelling large heterogeneous catchments experiencing significant spatial 320 

variation in rainfall.  Such variations were not observed when using the time varying parameter 321 

framework for small deforested catchments (< 350ha) [see Pathiraja et al., 2016b].  The 322 

comparatively less clear parameter changes for the Nammuc catchment are due to a combination of 323 

the increased difficulty in accurately modelling the hydrologic response (even in pre-change 324 

conditions) and due to the relatively more subtle and gradual changes to land cover.  Nonetheless, 325 

the method is shown to generate a temporally varying structure that is conceptually representative 326 

of the observed changes.        327 

 328 

Despite the overall correspondence between changes to model parameters and observed 329 

streamflow, a closer examination shows that the hydrologic model structure is critical in determining 330 

whether the time varying parameter models accurately reflect changes in all aspects of the 331 

hydrologic response (not just total streamflow).  In order to examine the impact of parameter 332 

variations on the model dynamics, we generated model simulations with the time varying parameter 333 

ensemble from the LL Dual EnKF, but without state updating (hereafter referred to as TVP-HBV and 334 

TVP-HyMOD). Streamflow predictions from the LL Dual EnKF (i.e. with state and parameter updating) 335 

for both the HyMOD and HBV are generally of similar quality and superior to those from the 336 

respective time invariant parameter models, although a slight bias in baseflow predictions from 337 

HyMOD is evident (see for example Figure 6).  However, differences in predictions from TVP-HBV and 338 

TVP-HyMOD are more striking due to the lack of state updating. Figure 7 shows annual statistics of 339 

simulated streamflow from the TVP-HBV and TVP-HyMOD models and observed runoff.  The TVP-340 

HBV gives direct runoff and baseflow predictions that are consistent with runoff observations, 341 

meaning that the parameter adjustments reflect the observed changes in the runoff response.  This 342 
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however is not the case for the TVP-HyMOD. The annual runoff coefficient and annual direct runoff 343 

coefficient are severely under-estimated in the post-change period by the TVP-HyMOD, whilst the 344 

Annual Baseflow Index has an increasing trend of magnitude far greater than observed (Figure 7c).  345 

All three quantities on the other hand are well represented by the TVP-HBV (Figure 7).     346 

 347 

Similar conclusions can be drawn from Figure 8, which shows the results of a Moving Average 348 

Shifting Horizon (MASH) analysis (see Section 2.1) on total and direct runoff (observed and 349 

simulated).  Observed increases in January to April flows (see Figure 8a) and wet season direct flows 350 

(July to September) (see Figure 8e) are well represented by the TVP-HBV but not TVP-HyMOD.  The 351 

reason for these differences between the two models  lies in their structure.  In joint state-parameter 352 

updating using HyMOD, underestimated runoff predictions during recession periods lead to 353 

adjustments to the 𝑘𝑠 and 𝛼 parameters to increase baseflow depth.  Unlike HBV, HyMOD has no 354 

continuous supply of water to the routing stores (i.e. the quick flow and slow flow stores) during 355 

recession periods (which typically have extended periods of no rainfall, so that 𝑉 in Figure 3 is zero).  356 

This means that 𝑘𝑠 and 𝛼 are updated to extreme values to compensate for the volumetric shortfall.  357 

HBV on the other hand has a continuous percolation of water into the deep layer store even during 358 

periods of no rain (so long as the shallow water store is non-empty).  In summary, the HyMOD model 359 

structure prevents the parameters from being updated to values that realistically reflect the 360 

observed changes to catchment dynamics.     361 

 362 

Having established that the TVP-HBV provided a good representation of the observed streamflow 363 

dynamics, we used a modelling approach to determine whether the observed changes were 364 

climatically driven and which (if any) components of runoff were affected by land use change.  A 365 

resampled rainfall and temperature time series was generated by sampling the data without 366 

replacement across years for each day (for instance rainfall and temperature for 1st January 1990 is 367 

found by randomly sampling from all records on 1st January).  This maintains the intra-annual (e.g. 368 
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seasonal) variability but destroys any inter-annual trends in the meteorological data.  Streamflow 369 

simulations were then generated using this resampled meteorological sequence as inputs to the TVP-370 

HBV (i.e. without state updating).  Figure 8d&h show the results of a MASH undertaken on the 371 

resulting simulations of total and direct runoff.  Observed increases in baseflow during the January – 372 

April period (see Figure 8a) and increases in direct runoff in the June – September period (see 373 

Figure8e) are reproduced.  The magnitude of increase in direct runoff in July is slightly lower, 374 

indicating the potential for some climatic influences also. This is consistent with findings from the 375 

Mann-Kendall test which identified a statistically significant increase in July rainfall (see Section 2.1).  376 

Overall however, these results lend further weight to the conclusion that land cover change has 377 

impacted the hydrologic regime of the Nammuc catchment.   378 

5. Conclusions  379 

As our anthropogenic footprint expands, it will become increasingly important to develop modelling 380 

methodologies that are capable of handling dynamic catchment conditions.  Previous work proposed 381 

the use of models whose parameters vary with time in response to signals of change in observations. 382 

The so-called Locally Linear Dual EnKF time varying parameter estimation algorithm [Pathiraja et al., 383 

2016a] was applied to 2 sets of small (< 350 ha) paired experimental catchments with deforestation 384 

occurring under experimental conditions (rapid clearing of 100% and 50% of land surface) [Pathiraja 385 

et al., 2016b].  Here we demonstrate the efficacy of the method for a larger catchment experiencing 386 

more realistic land cover change, whilst also investigating the importance of the chosen model 387 

structure in ensuring the success of time varying parameter methods.  We also demonstrate that the 388 

time varying parameter framework can be used in a retrospective fashion to determine whether 389 

changes to the hydrologic regime are a result of climatic or land cover changes.   390 

 391 

Experiments were undertaken on the Nammuc catchment (2880 km2) in Vietnam, which experienced 392 

a relatively gradual conversion from forest to cropland over a number of years (cropland increased 393 
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from roughly 23% of the catchment between 1981 and 1994 to 52% by 2000).  Changes to the 394 

hydrologic regime after the mid-1990s were detected and attributed mostly to an increase in 395 

baseflow volume.  Application of the LL Dual EnKF with two conceptual models (HBV and HyMOD) 396 

showed that the time varying parameter framework with state updating improved streamflow 397 

prediction in post-change conditions compared to the time invariant parameter case.  However, 398 

baseflow predictions from the LL Dual EnKF with HBV were generally superior to the HyMOD case 399 

which tended to have a slight negative bias.  It was found that the structure (i.e. model equations) of 400 

HyMOD was unsuited to representing the modified baseflow conditions, resulting in extreme and 401 

unrealistic time varying parameter estimates.  This work shows that the chosen model is critical for 402 

ensuring the time varying parameter framework successfully models streamflow in unknown future 403 

land cover conditions.  Appropriate model selection can be a difficult task due to the significant 404 

uncertainty associated with future land use change, and can be even more problematic when 405 

multiple models have similar performance in pre-change conditions (as was the case in this study).  406 

One possible way to ensure success of the time varying parameter approach is to use physically 407 

based models whose fundamental equations more closely model physical processes (for instance, 408 

modelling sub-surface flow using Richard’s equation with hydraulic conductivity allowed to vary with 409 

time).  The drawback of such approaches is that they are generally data intensive, both in generating 410 

model simulations (i.e. detailed inputs) and specifying parameters.  Another possibility is to combine 411 

time varying parameter framework with multi-model approaches.   412 
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Tables 560 

 Pre 1994 Post 1994 

Land Use 

Evergreen Forest  

(including evergreen needle and 

evergreen leaf)  (%) 

77% 48% 

Cropland (%) 23% 52% 

Hydro-Meteorological Properties 

Mean Annual Rainfall (mm) 1630 1660 

Mean Annual Runoff (mm) 838 1190 

Mean Annual Runoff Coefficient 0.5 0.7 

Mean Annual PET (mm) 1300 1300 

Table 1: Study Catchment Properties  561 

 562 
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 565 

 HYMOD HBV 

NSE [ ] 0.77 0.75 

Peak flows (q > 5mm/d) 

MAE [mm/d] 3.11 2.85 

RMSE [mm/d] 4.55 4.72 

Medium flows (1 mm/d <= q <= 5mm/d) 

MAE [mm/d] 0.66 0.80 

RMSE [mm/d] 0.86 1.09 

Low flows (q < 1mm/d) 

MAE [mm/d] 0.35 0.20 

RMSE [mm/d] 0.42 0.34 

Table 2: Model performance in pre-change conditions (1975 – 1979).  Bold face numbers 566 

correspond to the model with superior performance for the particular metric.  567 

 568 
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 570 

 Sensitivity Index 

hl1 0.10 

lp 0.12 

Maxbas 0.14 

fcap 0.18 

K0 0.23 

K2 0.23 

K1 0.38 

beta 0.41 

perc 0.47 

Table 3: Variance Based Sensitivity Analysis Results for HBV parameters: first order sensitivity 571 

index representing the contribution of varying a single parameter to the variance of the model 572 

output.  Lower values indicate lower sensitivity.  573 

 574 
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Parameters 

 Description Units 
Initial Sampling 

Distribution 
Feasible 
Range 

Initial 𝒔𝟐 
(VVM) 

Max allowable 
daily rate of 
change (LL) 

𝛽 
Soil Moisture 

exponent 
[ ] N(2, 0.1) 0 – 7  0.003 1.8x10-3 

𝑓𝑐𝑎𝑝 
Maximum soil 
moisture store 

depth 
[mm] N(467, 10) 10 – 2000  0.003 0.4 

ℎ𝑙1 

Threshold for 
generation of 
near surface 

flow 

[mm] N(120, 10) 0 – 400   0.003 0.1 

𝐾0 
Near Surface 
Flow Routing 

Coefficient 
[ ] N(0.3, 0.005) 0.0625 – 1  0.003 2x10-4 

𝐾1 
Interflow 
Routing 

Coefficient 
[ ] N(0.09, 5x10-4) 0.02 – 0.1  0.003 9x10-6 

𝑝𝑒𝑟𝑐 Percolation rate [mm/d] N(1.3, 10-4) 0 – 3  0.003 10-3 

𝐾2 

Baseflow 
Routing 

Coefficient 
[ ] N(0.01, 10-6) 5x10-5– 0.02  0.003 9x10-6 

States 

𝑠𝑜𝑤𝑎𝑡 
Soil Moisture 

Store 
[mm] N(0,1) (0, 𝑓𝑐𝑎𝑝) 

 𝑠𝑡𝑤1 
Shallow Layer 

Store 
[mm] N(0,1) (0, ∞) 

𝑠𝑡𝑤2 
Deep Layer 

Store 
[mm] N(0,0.1) (0, ∞) 

Table 4: Locally Linear EnKF inputs for the HBV model case 578 
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Figures 586 

 587 

 588 
 589 

Figure 1: Study Catchment showing gauges and changes in land use cover over time  590 
 591 
 592 
 593 
 594 
 595 
 596 
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 599 

 600 

 601 

 602 
 603 

 604 
Figure 2: Impact of land use change on observed streamflow: a) Annual Runoff Coefficient, b) 605 

Annual Baseflow Index (BFI), c) Moving Average Shifting Horizon (MASH) results for total observed 606 
runoff, d) MASH for observed rainfall. 607 

 608 
 609 
 610 
 611 
 612 
 613 
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 616 

Figure 3. Schematic of the models used in this study: a) HBV and b) HyMOD 617 

 618 
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 621 
 622 

Figure 4: Parameter Trajectories using the HBV model.  The dark grey shaded areas indicate the 623 
middle 90% of the ensemble, bounded by the 5th and 95th percentiles.  The light grey shaded areas 624 
indicate the middle 50% of the ensemble, bounded by the 25th and 75th percentiles.  The ensemble 625 
mean is indicated by the blue line.  The vertical green panel indicates the assumed time period of 626 

rapid deforestation.   627 
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 632 

 633 
 634 

Figure 5: Parameter Trajectories using the HyMOD model.  The dark grey shaded areas indicate the 635 
middle 90% of the ensemble, bounded by the 5th and 95th percentiles.  The light grey shaded areas 636 
indicate the middle 50% of the ensemble, bounded by the 25th and 75th percentiles.  The ensemble 637 
mean is indicated by the blue line.  The vertical green panel indicates the assumed time period of 638 

rapid deforestation.   639 
 640 
 641 
 642 
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 645 

Figure 6: Representative Hydrographs of background streamflow from the LL Dual EnKF (black line), 646 
Time varying parameter model with no state updating (blue line), time invariant parameter model 647 
with no DA (green line) and observed streamflow (red line).  Results for HBV are shown in the top 648 

row and HyMOD in the bottom row.  A pre-change year (1974) is shown on the left and a post 649 
change year (1998) on the right.   650 
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 654 

 655 

 656 

Figure 7: Influence of time varying parameters on model output (i.e. without state updating) 657 
summarized in terms of the Annual Runoff Coefficient (top row), Annual Direct Runoff Coefficient 658 
(second row) and Annual Baseflow Index (BFI) (third row).  Results for HyMOD are shown in the 659 

first column, HBV are shown in the second column.   660 
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 666 

 667 

Figure 8: Moving Average Shifting Horizon (MASH) results for observed streamflow (first column), 668 

simulated streamflow from time varying parameter model (without state DA) for HYMOD (2nd 669 

column), HBV (third column), resampled climate HBV (fourth column).  These are split into total 670 

runoff (first row) and direct runoff or surface runoff (2nd row). 671 
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